Learning Cell-Aware Hierarchical Multi-Modal Representations for Robust Molecular Modeling
Zelin Zang, et al. (2026). "Learning Cell-Aware Hierarchical Multi-Modal Representations for Robust Molecular Modeling." AAAI 2026.
Zelin Zang, et al. (2026). "Learning Cell-Aware Hierarchical Multi-Modal Representations for Robust Molecular Modeling." AAAI 2026.
Zelin Zang, et al. (2026). "MedLA: A Logic-Driven Multi-Agent Framework for Complex Medical Reasoning with Large Language Models." AAAI Conference on Artificial Intelligence (AAAI).
Zelin Zang, et al. (2026). "CellScout: Visual Analytics for Mining Biomarkers in Cell State Discovery." IEEE Transactions on Visualization and Computer Graphics (TVCG).
Zelin Zang, et al. (2026). "Hierarchical Quantized Diffusion Based Tree Generation Method for Hierarchical Representation and Lineage Analysis." Under Review at ICLR 2026.
Gaoyang Luo*, Zelin Zang*, et al. (2026). "Expanding the RNA Virus Universe by Deep Learning Discovery with Rider." Under Review at Nature Methods.
Zelin Zang, et al. (2026). "Single Cell Lineage Foundation Model." Under Review at Nature Machine Intelligence.
Yaoting Sun*, Zelin Zang*, et al. (2026). "Multi-center multi-omics integration predicts individualized prognosis in medullary thyroid carcinoma." Nature Communications.
Zelin Zang, et al. (2026). "MDTree: A Masked Dynamic Autoregressive Model for Phylogenetic Inference." Journal of Machine Learning Research.
Zelin Zang, et al. (2026). "DMT-ME: MOE-Enhanced Explanable Deep Manifold Transformation for Complex Data Embedding and Visualization." IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI).
Zelin Zang, et al. (2025). "USD: Unsupervised Soft Contrastive Learning for Fault Detection in Multivariate Time Series." ICASSP 2025.
Zelin Zang, et al. (2025). "Deep Multimanifold Transformation-Based Multivariate Time Series Fault Detection." IEEE TNNLS.
Zelin Zang, et al. (2025). "MuST: Advancing Unified Spatial Transcriptomics Multitask Analysis with Multimodal Structure Transformation." Briefings in Bioinformatics.
Zelin Zang, et al. (2025). "A review of artificial intelligence based biological-tree construction: Priorities, methods, applications and trends." Information Fusion.
Chenrui Duan*, Zelin Zang*, et al. (2024). "PhyloGen: Language Model-Enhanced Phylogenetic Inference via Graph Structure Generation." NeurIPS 2024.
Zelin Zang, Hao Luo, Kai Wang, Panpan Zhang, Fan Wang, Stan Li, Yang You. (2024). "DiffAug: Enhance Unsupervised Contrastive Learning with Domain-Knowledge-Free Diffusion-based Data Augmentation." International Conference on Machine Learning (ICML).
Kai Wang, Dongwen Tang, Boya Zeng, Yida Yin, Zhaopan Xu, Yukun Zhou, Zelin Zang, Trevor Darrell, Zhuang Liu, Yang You. (2024). "Neural network diffusion." arXiv preprint arXiv:2402.13144.
Sitao Luan, Chenqing Hua, Qincheng Lu, Liheng Ma, Lirong Wu, Xinyu Wang, Minkai Xu, Xiao-Wen Chang, Zelin Zang, Doina Precup, et al. (2024). "The heterophilic graph learning handbook: Benchmarks, models, theoretical analysis, applications and challenges." arXiv preprint arXiv:2407.09618.
Zelin Zang, Shenghui Cheng, Hanchen Xia, Liangyu Li, Yaoting Sun, Yongjie Xu, Lei Shang, Baigui Sun, Stan Z. Li. (2024). "DMTEV: An Explainable Deep Network for Dimension Reduction." IEEE Transactions on Visualization and Computer Graphics (TVCG).
Zelin Zang, Lei Shang, Senqiao Yang, Fei Wang, Baigui Sun, Xuansong Xie, Stan Z. Li. (2023). "Boosting Novel Category Discovery Over Domains with Soft Contrastive Learning and All in One Classifier." ICCV 2023.
Zelin Zang, Yongjie Xu, Linyan Lu, Yulan Geng, Senqiao Yang, Stan Z. Li. (2023). "UDRN: Unified Dimensional Reduction Neural Network for Feature Selection and Feature Projection." Neural Networks.
Yongjie Xu*, Zelin Zang*, et al. (2023). "Structure-preserving visualization for single-cell RNA-Seq profiles using deep manifold transformation with batch-correction." Communications Biology.
Kailong Zhao, Yuhao Xia, Fujin Zhang, Zelin Zang, Stan Z. Li, Guijun Zhang. (2023). "Protein structure and folding pathway prediction based on remote homologs recognition using PAthreader." Communications biology.
Siyuan Li, Di Wu, Fang Wu, Zelin Zang, Stan Li. (2023). "Architecture-Agnostic Masked Image Modeling--From ViT back to CNN." International Conference on Machine Learning (ICML23).
Feiyang Guo, Linyan Lu, Zelin Zang, Mohammad Shikh-Bahaei. (2023). "Machine learning for predictive deployment of UAVs with multiple access." IEEE Open Journal of the Communications Society.
Zelin Zang, Siyuan Li, Di Wu, Ge Wang, Kai Wang, Lei Shang, Baigui Sun, Hao Li, Stan Z. Li. (2022). "DLME: Deep Local-flatness Manifold Embedding." ECCV 2022.
Yaoting Sun*, Sathiyamoorthy Selvarajan*, Zelin Zang*, Wei Liu, Yi Zhu, Hao Zhang, Wanyuan Chen, Hao Chen, Lu Li, Xue Cai, et al. (2022). "Artificial intelligence defines protein-based classification of thyroid nodules." Cell Discovery.
Zelin Zang, Siyuan Li, Di Wu, Jianzhu Guo, Yongjie Xu, Stan Z. Li. (2022). "Deep manifold embedding of attributed graphs." Neurocomputing.
Lirong Wu, Zicheng Liu, Jun Xia, Zelin Zang, Siyuan Li, Stan Z. Li. (2022). "Generalized Clustering and Multi-Manifold Learning with Geometric Structure Preservation." IEEE/CVF Winter Conference on Applications of Computer Vision (WACV).
Kai Zhou, Yaoting Sun, Lu Li, Zelin Zang, Jing Wang, Jun Li, Junbo Liang, Fangfei Zhang, Qiushi Zhang, Weigang Ge, et al. (2021). "Eleven routine clinical features predict COVID-19 severity uncovered by machine learning of longitudinal measurements." Computational and structural biotechnology journal.
Di Wu, Siyuan Li, Zelin Zang, Kai Wang, Lei Shang, Baigui Sun, Hao Li, Stan Z. Li. (2021). "Align yourself: Self-supervised pre-training for fine-grained recognition via saliency alignment." arXiv preprint arXiv:2106.15788.
Fangfei Zhang, Shaoyang Yu, Lirong Wu, Zelin Zang, Xiao Yi, Jiang Zhu, Cong Lu, Ping Sun, Yaoting Sun, Sathiyamoorthy Selvarajan, et al. (2020). "Phenotype classification using proteome data in a data-independent acquisition tensor format." Journal of the American Society for Mass Spectrometry.
Stan Z. Li, Zelin Zang, Lirong Wu. (2020). "Markov-lipschitz deep learning." arXiv preprint arXiv:2006.08256.
Guoqi Chen, Wanliang Wang, Zheng Wang, Honghai Liu, Zelin Zang, Weikun Li. (2020). "Two-dimensional discrete feature based spatial attention CapsNet For sEMG signal recognition." Applied Intelligence.
Zelin Zang, Wanliang Wang, Yuhang Song, Linyan Lu, Weikun Li, Yule Wang, Yanwei Zhao. (2019). "Hybrid Deep Neural Network Scheduler for Job-Shop Problem Based on Convolution Two-Dimensional Transformation." Computational intelligence and neuroscience.
Jin-Ting Ding, Hang-Yao Tu, Ze-Lin Zang, Min Huang, Sheng-Jun Zhou. (2018). "Precise control and prediction of the greenhouse growth environment of Dendrobium candidum." Computers and electronics in agriculture.
Planning Meeting at CAIR Strategic Research Planning Session, Hong Kong
Technical Proposal at BGI Virtual Cell Project Planning Meeting, Shenzhen, China
Research Seminar at BGI Proteomics Research Seminar, Shenzhen, China
Academic Seminar at Computational Biology Research Seminar, Beijing, China
Progress Report at Rootcloud AI Project Review Meeting, Shanghai, China
Seminar Presentation at Medical AI Research Seminar (Ant Group Collaboration), Hangzhou, China
Project Proposal at CAIR Research Proposal Presentation, Hong Kong
Workshop Presentation at Guangzhou Health Data Intelligence Workshop, Guangzhou, China
Progress Report at Proteomics and Single-Cell Biology Workshop, Shanghai, China
Keynote Speech at Multi-Modal Biological Data Integration Symposium (Opening Ceremony), Beijing, China
Ph.D. Dissertation Defense at Zhejiang University, College of Information Science and Electronic Engineering, Hangzhou, China
Invited Lecture at West Coast AI in Healthcare Conference, San Francisco, CA, USA
Research Talk at Computational Biology Seminar, Beijing, China
Forum Presentation at High-Dimensional Data Analysis Research Forum, Shanghai, China
Technical Seminar at AI Technology Forum, Hangzhou, China
Research Preview at BGI Research Seminar, Shenzhen, China
Research Seminar at CAIR (Centre for Artificial Intelligence Research), Hong Kong, Hong Kong
Technical Discussion at Team Technical Meeting, Hangzhou, China
Poster Presentation at International Conference on Machine Learning (ICML 2024), Vienna, Austria
Job Talk at Westlake University / Zhejiang University Joint Faculty Interview, Hangzhou, China
Research Talk at BGI Genomics (Hangzhou Genomics Institute), Hangzhou, China
Research Talk at Biomedical AI Symposium, Hangzhou, China
Lecture at National University of Singapore, HPC-AI Lab, Singapore
Research Presentation at Lab Research Seminar, Hangzhou, China
Presentation at FINE Research Assessment, Beijing, China
Talk at Fudan University, School of Computer Science, Shanghai, China